Basic information
Entrez ID Official symbol Synonyms Description Location Type of protein External annotation
6419 SETMAR METNASE, Mar1 SET domain and mariner transposase fusion gene 3p26.1 protein-coding Genecard
Summary
uniprot_summary refseq_summary
Protein derived from the fusion of a methylase with the transposase of an Hsmar1 transposon that plays a role in DNA double-strand break repair, stalled replication fork restart and DNA integration. DNA-binding protein, it is indirectly recruited to sites of DNA damage through protein-protein interactions. Has also kept a sequence-specific DNA-binding activity recognizing the 19-mer core of the 5-terminal inverted repeats (TIRs) of the Hsmar1 element and displays a DNA nicking and end joining activity (PubMed:16332963, PubMed:16672366, PubMed:17877369, PubMed:17403897, PubMed:18263876, PubMed:22231448, PubMed:24573677, PubMed:20521842). In parallel, has a histone methyltransferase activity and methylates Lys-4 and Lys-36 of histone H3. Specifically mediates dimethylation of H3 Lys-36 at sites of DNA double-strand break and may recruit proteins required for efficient DSB repair through non-homologous end-joining (PubMed:16332963, PubMed:21187428, PubMed:22231448). Also regulates replication fork processing, promoting replication fork restart and regulating DNA decatenation through stimulation of the topoisomerase activity of TOP2A (PubMed:18790802, PubMed:20457750). This gene encodes a fusion protein that contains an N-terminal histone-lysine N-methyltransferase domain and a C-terminal mariner transposase domain. The encoded protein binds DNA and functions in DNA repair activities including non-homologous end joining and double strand break repair. The SET domain portion of this protein specifically methylates histone H3 lysines 4 and 36. This gene exists as a fusion gene only in anthropoid primates, other organisms lack mariner transposase domain. Alternate splicing results in multiple transcript variants.
Assessment table
Caregory Description Value Value range ( Low - High ) Comment
PLI The probability of being loss-of-function (LoF) intolerant 0.002 [0, ..., 1] Genes with high pLI scores (pLI ≥ 0.9) are extremely LoF intolerant, whereby genes with low pLI scores (pLI ≤ 0.1) are LoF tolerant. The score is calculated based on high-quality exome sequence data (ExAC) for 60,706 individuals of diverse ethnicities.
Haploinsufficiency (HI) score rank Predicted probability of exhibiting haploinsufficiency [100, ..., 1] High ranks (e.g. 0-10%) indicate a gene is more likely to exhibit haploinsufficiency, low ranks (e.g. 90-100%) indicate a gene is more likely to NOT exhibit haploinsufficiency (DECIPHER, PMID: 20976243). haploinsufficiency means a single functional copy of a gene is insufficient to maintain its normal function and is extremely intolerant of LoF variation.
Gene brain expressed Queried gene is expressed in brain tissues True [False, True] The gene expression data are extracted from GTEx v7 and BrainSpan. A gene with the expression value of (log 2 based (TPM+1)) at least 1 TPM/RPKM/FPKM in one or more tissues related to the brain is considered brain-expressed.
Protein brain expressed Queried protein is expressed in brain tissues True [False, True] The protein expression data are extracted from ProteomicsDB (v2018.09). A protein with the expression value of (log based 10 (iBAQ intensity)) at least 0.5 in one or more tissues related to the brain is considered brain-expressed protein.
Carrying LoF DNMs Number of loss-of-function DNMs hit the queried gene 0
(Case)
[0, ..., 67] with average of 0.160 Loss of function (LoF) mutations include frameshift indels, nonsense (stop-gained) and splice-site mutations, which can result in the gene product having less or no function and can have deleterious consequences.
2
(Control)
[0, ..., 6] with average of 0.044
Carrying missense DNMs Number of missense DNMs hit the queried gene 1
(Case)
[0, ..., 55] with average of 0.846 Missense mutations can result in changes in protein sequences, but are commonly considered to have less deleterious impacts than LoF mutations.
0
(Control)
[0, ..., 21] with average of 0.300
FMRP binding targets FMRP inteacting parters False [False, True] FMRP loss of function causes Fragile X syndrome (FXS). The binding targets identified crosslinking immunoprecipitation (HITS-CLIP) in mouse brains (PMID:21784246). Many FMRP targets are among genes implicated in different neuropsychiatric diseases, such as autism, schizophrenia.
Postsynaptic density (PSD) Protein associates with postsynaptic membranes of excitatory synapses False [False, True] Abnormalities with PSD proteins are linked to various neuropsychiatric diseases including neurodevelopmental disorders.
Human essential genes - False [False, True] Genes are thought to be critical for human survival.